REACTION OF TRIPHENYLPHOSPHINE-CARBON TETRAHALIDE REAGENT WITH $\alpha\textsc{-}\text{KETO-}\gamma\textsc{-}\text{LACTONE}$

Minoru SUDA* and Asako FUKUSHIMA Sagami Chemical Research Center Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229

Triphenylphosphine-carbon tetrahalide reagent reacts with 4,4-dimethyloxolan-2,3-dione to afford two dihalomethyleneoxolanes, $\underline{8}$ and $\underline{9}$. The major reaction course can be changed by the addition order of the reagents. Reaction mechanisms are discussed.

Triphenylphosphine $\underline{1}$ (R=Ph) with carbon tetrahalide $\underline{2}$ (CBr $_4$ and CCl $_4$) has been known to react with carbonyl compounds to produce 1,1-dihalogeno-olefins. 1) This reagent is also useful for the exchange of hydroxy group with a halogen atom. 2) In the former transformation, phosphonium salt $\underline{4}$, which is produced from $\underline{1}$ and $\underline{2}$ via $\underline{3}$, reacts further with $\underline{1}$ to form a ylid $\underline{5}$ (R=Ph). This ylid has been believed to react with carbonyl compounds (Wittig type reaction) to afford 1,1-dihalogeno-olefins. On the other hand, when tris(dimethylamino)-phosphine $\underline{1}$ (R=NMe $_2$) is used in place of triphenylphosphine, no ylid of the type $\underline{5}$ has been claimed to be formed. 3) Instead, carbonyl compounds react with phosphonium salt $\underline{3}$ (R=NMe $_2$) producing an adduct $\underline{6}$. Subsequent transformation shown in the following scheme generates 1,1-dihalogeno-olefins. In this report, we present our findings that more than one reaction pathways are involved in this dihalomethylenation reaction using triphenylphosphine-carbon tetrahalide system, suggesting the presence of an interaction between $\underline{3}$ and carbonyl group prior to the ylid formation.

In connection with our project to prepare new derivatives of α -methylene- γ -lactones, which are expected to exhibit biological activities, we examined a reaction of $\underline{1}$ (R=Ph)+ $\underline{2}$ reagent with 4,4-dimethyloxolan-2,3-dione $\underline{7}$ and found that two dihalogeno-olefins were produced. Experimentally, when $\underline{1}$ (R=Ph) was added in small portions into a solution of $\underline{2}$ (X=Br) and $\underline{7}$ in dichloromethane (Method A), two dibromoolefins $\underline{8a}^4$ and $\underline{9a}^5$ were isolated in 21 and 58% yields, respectively. On the other hand, when ylid $\underline{5}$ (R=Ph, X=Br), which was produced by mixing $\underline{1}$ (R=Ph) and $\underline{2}$ (X=Br) in dichloromethane, was treated with $\underline{7}$ (Method B), the same products were obtained, but in this case the yields were 57% for $\underline{8a}$ and 13% for $\underline{9a}$. This diverse reactivity was also observed with triphenylphosphine-carbon tetrachloride reagent; $\underline{8b}$ and $\underline{9b}$ were isolated in 5 and 59% yields, respectively, in Method A, while isolated yields in Method B were 44% for $\underline{8b}$ and 38% for $\underline{9b}$.

$$0 \longrightarrow 0 + 2 \text{ PPh}_3 + CX_4 \longrightarrow 0 \longrightarrow 0 + CX_2 \qquad a; X=Br$$

$$0 \longrightarrow 1 \qquad 2(a,b) \qquad 8 \qquad 9 \qquad b; X=C1$$

The structures of these products were determined from spectroscopic data and by chemical transformations. When $\underline{8}(a,b)$ was treated with excess sodium methoxide an orthoester $\underline{10}^{6}$ was obtained. This was hydrolyzed upon standing at room temperature to a ketoester $\underline{11}^{7}$. Reaction of $\underline{9}(a,b)$ with sodium methoxide formed similarly an orthoester $\underline{12}^{8}$ and its hydrolysis afforded a diester $\underline{13}^{9}$. Chemical shifts of methyne protons in these products $[\delta \ 4.12(\underline{10}), \ 4.58(\underline{11}), 2.59$ ($\underline{12}$), and $3.22(\underline{13})$] in NMR spectra clearly distinguish the structures. Also, mass spectra of $\underline{8}$ show a strong fragmentation peak at \underline{M}^{+} -84, corresponding to \underline{CX}_{2} -C=0.

Sodium borohydride reduction was rather deceptive. Reduction of 8a and 8b produced 14^{10} and 15, 11 while 9(a,b) was reduced to lactol 16(a,b).

In order to know the mechanism of this dihalomethylenation reaction, several control experiments were performed using CBr_4 in Method A, and we obtained following observations. 1) Even when 1/10 of the required amount of $\underline{1}$ (R=Ph) was added, $\underline{9a}$ was formed. 2) When the added amount of $\underline{1}$ (R=Ph) was less than a half of the total, only $\underline{9a}$ was produced. $\underline{8a}$ appeared near the end of addition of $\underline{1}$. This suggests that $\underline{8}$ and $\underline{9}$ are not produced from a common intermediate. 3) Addition of triphenylphosphine dibromide had no effect on the reaction course. 4) When reagent $\underline{5}$ (R=Ph, X=Br) was prepared either from $\underline{1}$ (R=Ph), $\underline{2}$ (X=Br), and zinc, $\underline{13}$ or from $\underline{1}$ (R=Ph), CHBr $_3$, and potassium t-butoxide, $\underline{14}$ and treated with $\underline{7}$, both $\underline{8a}$ and $\underline{9a}$ were obtained in very low yields. Furthermore, similar diverse reactivity of ($\underline{1}$ + $\underline{2}$) reagent has been reported in the reaction with alcohols. Namely, halides are obtainable only when the alcohol is present in the reaction mixture before the addition of $\underline{1}^{15}$ (this corresponds to Method A in this report).

Above results suggest that no ylid intermediate of the type $\underline{5}$ was formed in Method A, at least at the early stage of addition of $\underline{1}$ (R=Ph). In Method A, initially formed phosphonium salt $\underline{3}$ (R=Ph, X=Br) reacts with ketone carbonyl in $\underline{7}$ preferentially before the formation of ylid $\underline{5}$. And once a ylid $\underline{5}$ (R=Ph) is formed, it reacts with both carbonyl groups in $\underline{7}$ affording $\underline{8}$ as the major product. This indicates that besides the accepted ylid reaction via $\underline{5}$ (R=Ph), dihalomethylenation of carbonyl compounds using triphenylphosphine proceeds by direct interaction between phosphonium salt $\underline{3}$ and carbonyl compound prior to ylid formation (a mechanism similar to the one using tris(dimethylamino)phosphine). And the chemoselectivity of these two nucleophilic reagents ($\underline{3}$ and $\underline{5}$) toward $\underline{7}$ was quite marked.

In the above, we showed that two different pathways seems to be involved in the dihalomethylenation of α -keto- γ -lactone by triphenylphosphine-carbon tetrahalide reagent, and major reaction course can be controlled by changing the addition order of reagent.

REFERENCES AND NOTES

- 1) R. Rabinowitz and R. Marcus, J. Am. Chem. Soc., 84, 1312 (1962).
 - F. Ramirez, N. B. Desai, and N. McKelvie, J. Am. Chem. Soc., <u>84</u>, 1745 (1962).
- 2) I. M. Downie, J. B. Holmes, and J. B. Lee, Chem. & Ind., 1966, 900.
 - J. B. Lee and T. J. Nolan, Can. J. Chem., 44, 1331 (1966).
 - J. B. Lee and I. M. Downie, Tetrahedron, 23, 359 (1967).
 - J. B. Lee and T. J. Nolan, Tetrahedron, 23, 2789 (1967).
 - J. Hooz and S. S. H. Gilani, Can. J. Chem., 46, 86 (1968).
 - L. Gruber, I. Tomoskozi, and L. Radics, Synth., 1975, 708.
- J. C. Combret, J. Villieras, and G. Lavielle, Tetrahedron Lett., <u>1971</u>, 1035.
 G. Lavielle, J. C. Combret, and J. Villieras, Bull. Soc. chim. Fr., <u>1971</u>, 2047.
- 4) Bp 76-78°C/0.5 Torr.; NMR δ 1.22(6H,s), 4.15(2H,s); IR 1740, 1590, 1465, 1270, 1180, 1160, 1000, 860, 740 cm⁻¹; MS m/e 286(24%), 284(49), 282(26), 271 (6), 269(13), 267(7), 202(41), 200(84), 198(44), 174(7), 172(15), 170(8), 56 (73), 41(100).
- 5) Mp 84-85°C; NMR δ 1.44(6H,s), 3.88(2H,s); IR 1760, 1600, 1470, 1255, 1150, 1050, 1030, 770 cm⁻¹; MS m/e 286(16%), 284(30), 282(15), 271(22), 269(43), 267(22), 243(20), 241(41), 239(21), 228(6), 226(19) 224(10), 205(49), 203(45), 161(48), 159(46), 147(93), 145(89), 65(76), 39(100).
- 6) NMR δ 1.15(6H,s), 3.40(9H,s), 3.85(1H,d,J=8Hz), 4.07(1H,d,J=8Hz), 4.12(1H,s).
- 7) NMR δ 1.17(3H,s), 1.20(3H,s), 3.80(3H,s), 3.98(1H,d,J=9Hz), 4.15(1H,d,J=9Hz), 4.58(1H,s); IR 1750, 1230, 1100, 1070 cm⁻¹.
- 8) NMR δ 1.17(3H,s), 1.21(3H,s), 2.59(1H,s), 3.37(9H,s), 3.75(1H,d,J=8Hz), 4.03 (1H,d,J=8Hz); IR 1780, 1080 cm⁻¹; MS m/e 187(49%, M⁺-OCH₃).
- 9) NMR δ 1.15(3H,s), 1.30(3H,s), 3.22(1H,s), 3.78(3H,s), 3.97(1H,d,J=9Hz), 4.15(1H,d,J=9Hz); IR 1790, 1720, 1160, 1025 cm⁻¹; MS m/e 173(5%, M⁺+1).
- 10) NMR δ 1.22(6H,s), 4.22(2H,s), 6.27(1H,s); IR 3090, 1740, 1625,1300, 1140, 995, 720 cm⁻¹; MS m/e 206(26%), 204(25).
- 11) NMR δ 1.05(3H,s), 1.13(3H,s), 2.40(1H,d,J=3Hz,OH), 3.86(1H,d,J=8Hz), 4.08 (1H,d,J=8Hz), 4.28(1H,d,J=3Hz); IR 3200, 1020 cm⁻¹; MS m/e 200(5%), 198(30), 196(45).
- 12) 16a; NMR & 1.33(3H,s), 1.37(3H,s), 3.30(1H,OH), 3.73(1H,d,J=8Hz), 4.08(1H,d,J=8Hz), 5.75(1H,d); IR 3390, 1650, 1620, 1115 1070, 1035, 770 cm⁻¹; MS m/e 287(2%), 285(3), 283(2).

 16b; NMR & 1.29(3H,s), 1.35(3H,s), 3.67(1H,d,J=8Hz), 4.02(1H,d,J=8Hz), 4.27 (1H,d,J=4Hz), 5.81(1H,d,J=4Hz); IR 3370, 1640, 1120, 1070, 1030, 1015, 890 cm⁻¹; MS m/e 183(1%), 181(8), 179(12)(M⁺-OH).
- 13) E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 3769.
- 14) A. J. Speziale and K. W. Ratts, J. Am. Chem. Soc., 84, 854 (1962).
- 15) I. M. Downie, J. B. Lee, and M. F. S. Matough, Chem. Commun., 1968, 1350.
 I. Tomoskozi, L. Bruber, and L. Radics, Tetrahedron Lett., 1975, 2473.

(Received October 24, 1980)